55,011 research outputs found

    Tunneling between helical Majorana modes and helical Luttinger liquids

    Full text link
    We propose and study the charge transport through single and double quantum point contacts setup between helical Majorana modes and an interacting helical Luttinger liquid. We show that the differential conductance decreases for stronger repulsive interactions and that the point contacts become insulating above a critical interaction strength. For a single point contact, the differential conductance as a function of bias voltage shows a series of peaks due to Andreev reflection of electrons in the Majorana modes. In the case of two point contacts, interference phenomena make the structure of the individual resonance peaks less universal and show modulations with different separation distance between the contacts. For small separation distance the overall features remain similar to the case of a single point contact.Comment: v.2: 14 pages, 11 figures; adding one figure, an appendix, and some minor change

    APPLICATION OF PRICE ELASTICITIES TO FARM POLICY ANALYSIS: COMMENT

    Get PDF
    Demand and Price Analysis,

    Kondo effect in coupled quantum dots with RKKY interaction: Finite temperature and magnetic field effects

    Full text link
    We study transport through two quantum dots coupled by an RKKY interaction as a function of temperature and magnetic field. By applying the Numerical Renormalization Group (NRG) method we obtain the transmission and the linear conductance. At zero temperature and magnetic field, we observe a quantum phase transition between the Kondo screened state and a local spin singlet as the RKKY interaction is tuned. Above the critical RKKY coupling the Kondo peak is split. However, we find that both finite temperature and magnetic field restore the Kondo resonance. Our results agree well with recent transport experiments on gold grain quantum dots in the presence of magnetic impurities.Comment: 4 pages, 5 figure

    Quasirandom permutations are characterized by 4-point densities

    Get PDF
    For permutations π and τ of lengths |π|≤|τ| , let t(π,τ) be the probability that the restriction of τ to a random |π| -point set is (order) isomorphic to π . We show that every sequence {τj} of permutations such that |τj|→∞ and t(π,τj)→1/4! for every 4-point permutation π is quasirandom (that is, t(π,τj)→1/|π|! for every π ). This answers a question posed by Graham

    Quasinormal Modes of Kerr Black Holes in Four and Higher Dimensions

    Full text link
    We analytically calculate to leading order the asymptotic form of quasinormal frequencies of Kerr black holes in four, five and seven dimensions. All the relevant quantities can be explicitly expressed in terms of elliptical integrals. In four dimensions, we confirm the results obtained by Keshest and Hod by comparing the analytic results to the numerical ones.Comment: 14 pages, 7 figure

    A global approach for using kinematic redundancy to minimize base reactions of manipulators

    Get PDF
    An important consideration in the use of manipulators in microgravity environments is the minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the manipulator on its base as it performs its tasks. One approach which was proposed and implemented is to use the redundant degree of freedom in a kinematically redundant manipulator to plan manipulator trajectories to minimize base reactions. A global approach was developed for minimizing the magnitude of the base reactions for kinematically redundant manipulators which integrates the Partitioned Jacobian method of redundancy resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which is the time-integral of the magnitude of the base reactions. The global approach was also compared with a local approach developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one redundant degree-of-freedom. The results show that the global approach is more effective in reducing and smoothing the base force while the local approach is superior in reducing the base moment

    Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis

    Full text link
    We study numerically and analytically the dynamical (AC) conductance through a two-dot system, where only one of the dots is coupled to the leads but it is also side-coupled to the other dot through an antiferromagnetic exchange (RKKY) interaction. In this case the RKKY interaction gives rise to a ``two-stage Kondo effect'' where the two spins are screened by two consecutive Kondo effects. We formulate a renormalized scaling theory that captures remarkably well the cross-over from the strongly conductive correlated regime to the low temperature low conductance state. Our analytical formulas agree well with our numerical renormalization group results. The frequency dependent current noise spectrum is also discussed.Comment: 6 pages, 7 figure

    HOUSEHOLD FLUID MILK EXPENDITURE PATTERNS IN THE SOUTH AND UNITED STATES

    Get PDF
    Food Consumption/Nutrition/Food Safety,
    • …
    corecore